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Three-dimensional (3D) magnetic nulls are abundant in the solar atmosphere, as been

firmly established through contemporary observations. They are established to be im-

portant magnetic structures in, for example, jets and circular ribbon flares. While simula-

tions and extrapolations support this, the mechanisms behind 3D null generation remain

an open question. Recent magnetohydrodynamics (MHD) simulations propose that mag-

netic reconnection is responsible for both generating and annihilating 3D nulls, a novel

concept. However, these simulations began with initial magnetic fields already supporting

pre-existing nulls, raising the question of whether magnetic reconnection can create nulls

in fields initially devoid of them. Previously, this question was briefly explored in a simu-

lation with an initial chaotic magnetic field. However, the study failed to precisely identify

locations, topological degrees, and natures (spiral or radial) of nulls, and it approximated

magnetic reconnection without fully tracking field line in time. In this paper these findings

are revisited in light of recent advancements and tools used to locate and trace nulls, along

with the tracing of field lines, through which the concept of generation/annihilation of 3D

nulls from chaotic fields is established in a precise manner.
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Contemporary observations, particularly in the context of circular ribbon flares, unequivocally

indicates the existence nulls in the solar atmosphere1–3. Numerous extrapolations and simula-

tions further back this up4–7. Nevertheless, generation of 3D nulls is still an unresolved problem

and merits further attention. Toward this goal, recent magnetohydrodynamics (MHD) simulations

by Maurya, Bhattacharyya, and Pontin 8 , Maurya, Bhattacharyya, and Pontin 9 (hereafter called

YRD1 and YRD2) demonstrated magnetic reconnection to be responsible for 3D null generation

and their eventual annihilation—indeed a novel suggestion. While YRD1 initiates the simulation

with a pre-existing potential null, YRD2 advances the proposal by executing a data-based simu-

lation where the initial magnetic field is extrapolated using vector magnetogram data of a solar

active region (AR11977). Although in both the studies null generation was ubiquitous, the initial

magnetic field supported pre-existing nulls. A natural question is then whether magnetic recon-

nection can generate 3D nulls from an initial magnetic field having no such nulls initially. The

plausibility of such a scenario has been briefly explored in the simulation by Nayak et al. 10 where

the initial magnetic field was chaotic and devoid of any 3D null. Although that study demonstrated

the generation of magnetic nulls, it failed to precisely identify their location, topological degree

and nature (spiral or radial) using presently available standard tools like the upgraded null detec-

tion technique Maurya, Bhattacharyya, and Pontin 9 . Moreover, a claim of magnetic reconnection

demonstrated by change in field line connectivity requires strict maintenance of the involved mag-

netic field lines, which was approximated in Nayak et al. 10 by keeping the initial point of field line

integration constant at every instant whereas a more precise requirement is to follow the recon-

necting field lines as they advect with plasma flow (in the ideal MHD region). For completeness,

it is then indispensable to revisit the findings of Nayak et al. 10 in the light of recent understanding

and tools developed in YRD1 and YRD2 and put the idea of generation of 3D nulls from chaotic

field on a firmer footing.

Toward this objective, the following presents a brief discussion of the initial magnetic field. The

field is constructed by superposing two Arnold-Beltrami-Childress (ABC) fields11, each satisfying

the linear force-free equation

∇×B′ = λB′, (1)
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having solution

B′
x = Asinλ z+C cosλy, (2)

B′
y = Bsinλx+Acosλ z, (3)

B′
z =C sinλy+Bcosλx. (4)

and, being represented as

B = B′
1 +d0B′

2. (5)

The constant d0 relates the amplitudes of the two superposed fields. In Cartesian coordinates the

components of B are

Bx = A(sinλ1z+d0 sinλ2z)+C (cosλ1y+d0 cosλ2y) , (6)

By = B(sinλ1x+d0 sinλ2x)+A(cosλ1z+d0 cosλ2z) , (7)

Bz =C (sinλ1y+d0 sinλ2y)+B(cosλ1x+d0 cosλ2x) . (8)

Equation (1) is an eigenvalue equation of the operator (∇×), eigenfunctions of which forms a

complete orthonormal basis when eigenvalues λ are real12. Further simplification of (6) can be

made by selecting λ1 =−λ2 = λ , rendering

Bx = 0.5Asinz+1.5C cosy, (9)

By = 0.5Bsinx+1.5Acosz, (10)

Bz = 0.5C siny+1.5Bcosx, (11)

for the selection d0 = 0.5 and λ = 1. The resulting Lorentz force

(J×B)x = B2 sin2x−2AC sinycosz, (12)

(J×B)y =C2 sin2y−2ABcosxsinz, (13)

(J×B)z = A2 sin2z−2BC sinxcosy, (14)

can be utilized to drive the plasma from an initial static state to develop dynamics. Importantly,

the B is chaotic and a detailed discussion can be found in Kumar et al. 13 and Nayak et al. 10 .

Also, important is the relative magnitudes of the constants A, B and C. For instance, if A=B=1, an

increasing C makes the volume occupied by chaotic field larger—a conclusion derived in Kumar

et al. 13 , which can be used as a measure of chaoticity. For the simulations executed here, notable
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is the range 0 ≤C ≤ 0.3142, for A = B = 1, for which B is entirely devoid of any magnetic nulls.

Consequently, using the B as an initial condition provides the unique opportunity to explore null

generation from a state having no preexisting nulls—the objective of this communication; along

with understanding null dynamics in an environment of chaotic magnetic field, left as a future

exercise.

The simulations are carried out using the magnetohydrodynamic numerical model EULAG-

MHD14 idealizing the plasma to be thermodynamically inactive, incompressible, and having per-

fect electrical conductivity. The governing MHD equations are

ρ0

(
∂v
∂ t

+(v ·∇)v
)
=−∇p+

1
4π

(∇×B)×B+ν0∇
2v , (15)

∇ ·v = 0 , (16)
∂B
∂ t

= ∇× (v×B) , (17)

∇ ·B = 0 , (18)

in standard notations and cgs system of units. The constants ρ0 and ν0 are uniform density

and kinematic viscosity, respectively and ρ0 represents the constant mass density. Although not

strictly applicable in the solar corona, the incompressibility is invoked in other works also15,16.

With details in Smolarkiewicz and Charbonneau 14 (and references therein), salient features of

the EULAG-MHD applicable for this work are summarized here. Crucial to the model is the spa-

tiotemporally second-order accurate, non-oscillatory, forward-in-time, multidimensional, positive-

definite advection transport algorithm MPDATA17. The governing prognostic Equations (15) and

(17) are both solved in the Newtonian form with total derivatives of dependent variables and the

associated forcings forming the left- and right-hand side, respectively; see Section 2.1 in Smo-

larkiewicz and Charbonneau 14 for a discussion. This guarantees identity of null preservation as

the associated forcing of the induction equation vanishes at the nulls to the accuracy of the field

solenoidality (18), which is high14. Another important aspect is the proven dissipative nature

of the MPDATA18–20. This dissipation is intermittent and adaptive to the generation of under-

resolved scales in field variables for a fixed grid resolution. Using this dissipation property, the

MPDATA removes under-resolved scales by producing locally effective residual dissipation of

the second order in grid increments, enough to sustain the monotonic nature of the solution in

advective transport. The consequent magnetic reconnection is then in the spirit of ILESs that

mimics the action of explicit subgrid-scale turbulence models, whenever the concerned advective

field is under-resolved, as described in Margolin, Rider, and Grinstein 21 . Such ILESs performed
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with the model have successfully simulated regular solar cycles by Ghizaru, Charbonneau, and

Smolarkiewicz 22 and Racine et al. 19 , with the rotational torsional oscillations subsequently char-

acterized and analyzed in Beaudoin et al. 23 . The simulations carried out here also utilize the ILES

property to initiate magnetic reconnections already shown by Kumar et al. 24 .

The simulations have been carried out for the aforementioned field with C ∈ {0.15,0.3} to

explore null generations with an increase in chaoticity. The kinematic viscosity is set as ν = 0.010,

while the spatial and temporal grid increments are ∆x = ∆y = ∆z = 0.09973 along the x, y, z axes,

respectively and ∆t = 0.016, in CGS units. Triply periodic boundary conditions are applied, and

the grid resolution is set to 64 × 64 × 64 mapping a physical dimension of (2π)3 to facilitate

magnetic reconnection while optimizing the computation costs. Each simulation spans a time of

32 s.
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FIG. 1. The plot shows an increase in the number of nulls at a given instant and its maximal value over the

temporal range with an increase in chaoticity. The vertical axis represents the number of nulls and horizontal

axis represents time. The plots in different colors (pink, blue, green, and red) represent the variation in

number of nulls for a particular value of the chaoticity (0.15, 0.20,0.25,0.30, respectively). Generation of

nulls occur earlier in time as the chaoticity C increases, i.e., t =(31,23,9,8)s for C =(0.15,0.20,0.25,0.30).
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Figure 1 plots the number of nulls with time for different values of C, depicting an increase

in the number of nulls at a given instant and its maximal value over the temporal range with

an increase in chaoticity. Additionally, nulls appear earlier for larger values of C, precisely

at t = (31,23,9,8)s for C = (0.15,0.2,0.25,0.3). Interestingly, the null generation for all C

values is in bursts, most pronounced for C = 0.3 which shows three identifiable peaks at t =

{9.26,16.18,23.28} seconds. A possible reason can be a sudden increase in chaoticity near the

peaks, followed by its decrease. Figure 2 (Multimedia available online) verifies this ansatz by

following a local flux surface traversed by a single field line for C = 0.3 in t ∈ {16.08,16.29}s,

spanning the second prominent peak at t = 16.18s. Clearly, the surface loses its coherent struc-

ture as the line becomes more volume filling and hence chaotic. At t = 16.18s (Panel (c)), which

marks the second peak, the local flux surface is almost destroyed but reorganized itself at later

times (panels (d) to (f)). It has proposed that the presence of chaotic field lines may promote the

occurrence of magnetic reconnection in fields without nulls25,26, and in this case we see that the

increase in chaoticity is contemporal with the generation of nulls and with reconnection (see be-

low). The causal link remains to be fully explored in future investigations. Subsequent retrieval

of the flux surface arrests this increase in reconnection—-leading to a peak in the number of nulls.

Auxiliary analyses (not shown) indicates similar rationale behind all the other peaks also.

With chaoticity being directly related to onset of current sheets13 and hence, magnetic recon-

nections; the results indicate toward the possibility of magnetic reconnection being the underly-

ing reason for the null generations. To further support this hypothesis, a detailed study of field

line dynamics leading to the formation and annihilation of nulls is carried out. For this pur-

pose, the dynamics corresponding to C = 0.3 is selected as the nulls are generated earlier in

time and mostly away from the boundaries of the computational domain, leading to their bet-

ter tractability over time. The focus is set on the nulls generated in a pair with coordinates

(x,y,z) ∈ {(0.166,0.034,0.101)π,(0.169,0.034,0.101)π}, at t = 8.27s—panel (a) of Fig. 3)

(Multimedia available online) as it involves spiral-spiral pair generation and annihilation, hith-

erto unexplored in YRD1 and YRD2. Additionally, the pair is created almost at the beginning of

the pair generation, being third in the chronology.

With the experience gained from YRD1 and YRD2, the field lines are advected with the plasma

flow and traced in time to reveal the magnetic field line dynamics. The two sets of selected field

lines (one in green and the other in pink) are plotted in the ideal regions (i.e., away from recon-

nection sites) at coordinates x,y,z ∈ {(0.172,0.032,0.104)π,(0.1634,0.035,0.106)π} and traced
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FIG. 2. Panels depict a sudden increase in chaoticity near the second peaks in number of nulls, fol-

lowed by its decrease. In the figure a local flux surface traversed by a single field line for C = 0.3 in

t ∈ {16.08,16.29}s, spanning the second prominent peak at t = 16.18. Clearly, the surface loses its coher-

ent structure as the line becomes more volume filling and hence chaotic. At t = 16.18s (Panel (c)), which

marks the second peak, the local flux surface is almost destroyed but reorganized itself at later times (panels

(d) to (f)). (An animation is provided as a supplementary material).
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FIG. 3. Figure depicts the evolution of nulls with time after their generation. Nulls are traced in time and

field lines in green, pink, and red are drawn near the spiral null_1 (SN1), spiral null_2 (SN2), and spiral

null_3 (SN3), respectively. The colorbar in panels depicts the magnitude of the |J|/|B|, where J and B

represent current density and magnetic field. Panel (a) depicts the field lines structure near the nulls at

t = 8.27s, the time of their generation, two spiral nulls (SN1,SN2) are created. With the evolution SN1 and

SN2 recede away from each other (Panels (b)-(e)) and SN1 changes its nature from spiral to radial (panel

(e)). Subsequently this radial null reverts back to a spiral null (panels (f)-(h)), which later annihilates with

a different spiral null (SN3) formed in a distinct null pair generation process (panel (j)).(An animation is

provided as a supplementary material).
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in time.

At t = 8.26s, the green and pink field lines are connected from regions a to b (panel (a) of

Fig. 4) (Multimedia available online). With the evolution, at t = 8.27s field lines change their

connectivity from regions a to b to regions a to c and d, specifically, one green line changes its

connectivity from regions a to b to regions a to c, while the other green and pink field lines change

their connectivity from regions a to b to the regions a to d. Such changes in connectivity are

attributed to magnetic reconnection. The two nulls are generated simultaneously. The eigenvalues

of the Jacobian matrix ∇B at each null are calculated, and it is found that the imaginary part of the

eigenvalues is non-zero for each of the two nulls, implying that they are both spiral nulls (hereafter

referred to as SN1 and SN2, respectively). These nulls are traced in time and field lines are drawn

from the close vicinity of the nulls, as shown in Figure 3. The nulls move away from each other

after their generation (c.f. panels (a)-(e)). The topological details of the nulls are illustrated in

Figure 5 (a). The fan field lines (in green) of SN1 are directed away from the null, resulting in

a topological degree of −1, whereas the fan field lines (in pink) of SN2 are directed towards the

null, making a topological degree +1. The generation of nulls in pair satisfies the conservation of

net topological degree.

With further evolution, the imaginary part of the eigenvalues becomes zero, implying that the

SN1 loses its spirality and becomes a radial null and remains radial till t = 8.85s. Subsequently,

at t = 8.86s, the imaginary part of the eigenvalues again becomes non-zero, causing it to revert

back to a spiral null SN1 (Fig. 3). Subsequently, SN1 approaches another spiral null (panels (f),

(g)) and marked as SN3), which is one of the spiral-spiral null pair generated earlier at t = 8.1 and

marked as SN3 in Fig.3. SN1, SN2, and SN3 are traced in time and the green, pink, and red field

lines are drawn near SN1, SN2, and SN3, respectively (panels (f)-(g)). SN1 and SN3 approach

each other, and ultimately annihilate pairwise (panels (h)-(j) of Fig. 3). Similar to Figure 4, the

annihilation coincides with a change of global field line connectivity (not shown). The spine and

fan plane, along with the topological degree, are depicted in Fig. 5 (b). The red and green field

lines are plotted near SN3 and SN1. The fan field lines (depicted in red) are directed towards

the null, making topological degree +1 and the fan field lines (in green) are directed away from

the null, resulting in a topological degree −1. The conservation of net topological degree is self-

explanatory.

This communication relates spontaneous generation/annihilation of 3D nulls with varying lev-

els of chaoticity in an initially chaotic magnetic field while investigating evolution of the involved
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FIG. 4. Figure illustrate the magnetic reconnection leading to the spontaneous generation of two spiral

nulls. The two pink and one green selected magnetic field lines are drawn in the ideal regions (i.e., away

from reconnection sites), advected with the plasma flow, and traced in time. The colorbar represents the

same quantity |J|/|B| as mentioned in the caption of figure 3. At t = 8.21s all three (two pink and one

green) field lines are connected from region a to region b (panel (a)). With the evolution (acroos panels

(a)-(c)), green field line develops more prominent elbow shape and the connectivity of all field lines remain

same (i.e. connected from region a to region b) and |J|/|B| varies accordingly. Across panels (c) to (d),

a green and one of the two pink field lines change their connectivity from regions a to b to regions a to

d and c, respectively, which is a telltale sign of magnetic reconnection. With subsequent evolution, the

second pink field line also changes its connectivity from regions a to b to regions a to d, while the other

pink field lines change their connectivity from regions a to c to the regions a to d (c.f. panels (d)-(e)). Such

changes in connectivity are attributed to the magnetic reconnection. The two spiral nulls got spontaneously

got generated through this reconnection at t = 8.27s. The field lines drawn in the vicinity of the generated

spiral nulls to show clear structure of both nulls (panel (f)).10



FIG. 5. Figure depicts the topological details of the two spontaneously generated spiral nulls at t = 8.46s

(panel (a)) and the null pair at t = 8.86s (panel (b)). The fan field lines (in green) of spiral null_1 (SN1)

are directed away from the null, resulting in a topological degree of −1 (panels (a) and (b)), whereas the

fan field lines (in pink) of spiral null_2 (SN2) are directed towards the null, making a topological degree

+1. The fan plane field lines of spiral null_3 (SN3) (in red) are directed towards the null point making

topological degree +1 (panel (b)). With time these two nulls get annihilated.

11



magnetic field lines. The initial magnetic fields have been derived by superposing two ABC fields,

each satisfying the linear force-force condition. For the computations, C = 0.15,0.2,0.25, and 0.3,

corresponding to initial fields with increasing chaoticity. The updated trilinear 3D null detection

technique9 has been employed to locate the nulls, calculate their topological degrees, and nature

(spiral or radial) based on eigenvalues. These analytically constructed initially chaotic fields do not

contain any null (also checked by using null detection technique). The simulation results demon-

strate a direct correlation between chaoticity levels and the number of null generations, with higher

chaoticity leading to earlier null creations and increased null count. Further to explore null gener-

ation/annihilation in more detail, the chaoticity is set at C = 0.3 as the generation of nulls started

earlier in time. As an example of the null generation process, a spontaneously generated pair of

spiral nulls is selected. Interestingly, one of the nulls changes its nature from spiral to radial with

evolution. Subsequently this radial null reverts back to a spiral null, which later annihilates with

a different spiral null formed in a distinct null pair generation process. It is already known that

null generation and annihilation require local, non-ideal MHD effects27. To elucidate the global

impact of the creation and annihilation of nulls, the relevant magnetic field lines are traced in time

and advected with the plasma flow in the ideal region. It is observed that the field lines change

their connectivity from one domain to a different domain—demonstrating that the spontaneous

generation (and annihilation) of 3D null point pairs leads to a change in the global field topology.
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